博客
关于我
【Lintcode】1791. Simple Queries
阅读量:212 次
发布时间:2019-02-28

本文共 726 字,大约阅读时间需要 2 分钟。

问题描述

给定一个数组 A 和一组查询,每次查询要求统计数组 A 中小于等于给定值 k 的元素数量。题目保证数组 A 只包含非负整数。

解决方案思路

为了高效处理这些查询,我们可以采取以下步骤:

  • 排序数组:首先对数组 A 进行排序。排序后的数组有助于后续快速定位查询范围。
  • 频率统计:创建一个频率数组 count,用于记录每个数值在数组 A 中的出现次数。例如,count[i] 表示数组中等于 i 的元素数量。
  • 前缀和数组:构建一个前缀和数组 preSum,其中 preSum[i] 表示频率数组中从 0i-1 的前缀和。前缀和数组允许我们在常数时间内计算小于等于 k 的元素数量。
  • 具体实现步骤

  • 确定最大值:遍历数组 A,找到最大值 max,以便后续处理。
  • 频率统计数组:初始化一个大小为 max + 1 的频率数组 count,然后遍历数组 A,统计每个数值的出现次数。
  • 构建前缀和数组:创建一个前缀和数组 preSum,长度为 count.length + 1。前缀和数组的第 i 个元素表示从 0i-1 的频率之和。
  • 处理查询:对于每个查询值 sub[i]
    • 如果 sub[i] 大于 max,则返回数组 A 的长度,因为所有元素都小于等于 max
    • 否则,使用前缀和数组快速计算小于等于 sub[i] 的元素数量。
  • 时间复杂度分析

    • 排序时间复杂度:O(n log n),其中 n 是数组 A 的长度。
    • 频率统计时间复杂度:O(n)。
    • 前缀和构建时间复杂度:O(n)。
    • 查询时间复杂度:O(1),每个查询只需常数时间。

    总体时间复杂度为 O(n log n + q),其中 q 是查询的数量。这种方法在处理大量查询时表现尤为出色。

    转载地址:http://mgcs.baihongyu.com/

    你可能感兴趣的文章
    No qualifying bean of type ‘com.netflix.discovery.AbstractDiscoveryClientOptionalArgs<?>‘ available
    查看>>
    No resource identifier found for attribute 'srcCompat' in package的解决办法
    查看>>
    no session found for current thread
    查看>>
    No toolchains found in the NDK toolchains folder for ABI with prefix: mips64el-linux-android
    查看>>
    NO.23 ZenTaoPHP目录结构
    查看>>
    no1
    查看>>
    NO32 网络层次及OSI7层模型--TCP三次握手四次断开--子网划分
    查看>>
    NOAA(美国海洋和大气管理局)气象数据获取与POI点数据获取
    查看>>
    NoClassDefFoundError: org/springframework/boot/context/properties/ConfigurationBeanFactoryMetadata
    查看>>
    node exporter完整版
    查看>>
    Node JS: < 一> 初识Node JS
    查看>>
    Node Sass does not yet support your current environment: Windows 64-bit with Unsupported runtime(72)
    查看>>
    Node 裁切图片的方法
    查看>>
    Node+Express连接mysql实现增删改查
    查看>>
    node, nvm, npm,pnpm,以前简单的前端环境为什么越来越复杂
    查看>>
    Node-RED中Button按钮组件和TextInput文字输入组件的使用
    查看>>
    Node-RED中Switch开关和Dropdown选择组件的使用
    查看>>
    Node-RED中使用html节点爬取HTML网页资料之爬取Node-RED的最新版本
    查看>>
    Node-RED中使用JSON数据建立web网站
    查看>>
    Node-RED中使用json节点解析JSON数据
    查看>>