博客
关于我
【Lintcode】1791. Simple Queries
阅读量:212 次
发布时间:2019-02-28

本文共 726 字,大约阅读时间需要 2 分钟。

问题描述

给定一个数组 A 和一组查询,每次查询要求统计数组 A 中小于等于给定值 k 的元素数量。题目保证数组 A 只包含非负整数。

解决方案思路

为了高效处理这些查询,我们可以采取以下步骤:

  • 排序数组:首先对数组 A 进行排序。排序后的数组有助于后续快速定位查询范围。
  • 频率统计:创建一个频率数组 count,用于记录每个数值在数组 A 中的出现次数。例如,count[i] 表示数组中等于 i 的元素数量。
  • 前缀和数组:构建一个前缀和数组 preSum,其中 preSum[i] 表示频率数组中从 0i-1 的前缀和。前缀和数组允许我们在常数时间内计算小于等于 k 的元素数量。
  • 具体实现步骤

  • 确定最大值:遍历数组 A,找到最大值 max,以便后续处理。
  • 频率统计数组:初始化一个大小为 max + 1 的频率数组 count,然后遍历数组 A,统计每个数值的出现次数。
  • 构建前缀和数组:创建一个前缀和数组 preSum,长度为 count.length + 1。前缀和数组的第 i 个元素表示从 0i-1 的频率之和。
  • 处理查询:对于每个查询值 sub[i]
    • 如果 sub[i] 大于 max,则返回数组 A 的长度,因为所有元素都小于等于 max
    • 否则,使用前缀和数组快速计算小于等于 sub[i] 的元素数量。
  • 时间复杂度分析

    • 排序时间复杂度:O(n log n),其中 n 是数组 A 的长度。
    • 频率统计时间复杂度:O(n)。
    • 前缀和构建时间复杂度:O(n)。
    • 查询时间复杂度:O(1),每个查询只需常数时间。

    总体时间复杂度为 O(n log n + q),其中 q 是查询的数量。这种方法在处理大量查询时表现尤为出色。

    转载地址:http://mgcs.baihongyu.com/

    你可能感兴趣的文章
    Netty工作笔记0013---Channel应用案例4Copy图片
    查看>>
    Netty工作笔记0014---Buffer类型化和只读
    查看>>
    Netty工作笔记0020---Selectionkey在NIO体系
    查看>>
    Vue踩坑笔记 - 关于vue静态资源引入的问题
    查看>>
    Netty工作笔记0025---SocketChannel API
    查看>>
    Netty工作笔记0027---NIO 网络编程应用--群聊系统2--服务器编写2
    查看>>
    Netty工作笔记0050---Netty核心模块1
    查看>>
    Netty工作笔记0060---Tcp长连接和短连接_Http长连接和短连接_UDP长连接和短连接
    查看>>
    Netty工作笔记0077---handler链调用机制实例4
    查看>>
    Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
    查看>>
    Netty常见组件二
    查看>>
    netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
    查看>>
    Netty核心模块组件
    查看>>
    Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
    查看>>
    Netty源码—2.Reactor线程模型一
    查看>>
    Netty源码—4.客户端接入流程一
    查看>>
    Netty源码—4.客户端接入流程二
    查看>>
    Netty源码—5.Pipeline和Handler一
    查看>>
    Netty源码—6.ByteBuf原理二
    查看>>
    Netty源码—7.ByteBuf原理三
    查看>>