博客
关于我
【Lintcode】1791. Simple Queries
阅读量:212 次
发布时间:2019-02-28

本文共 726 字,大约阅读时间需要 2 分钟。

问题描述

给定一个数组 A 和一组查询,每次查询要求统计数组 A 中小于等于给定值 k 的元素数量。题目保证数组 A 只包含非负整数。

解决方案思路

为了高效处理这些查询,我们可以采取以下步骤:

  • 排序数组:首先对数组 A 进行排序。排序后的数组有助于后续快速定位查询范围。
  • 频率统计:创建一个频率数组 count,用于记录每个数值在数组 A 中的出现次数。例如,count[i] 表示数组中等于 i 的元素数量。
  • 前缀和数组:构建一个前缀和数组 preSum,其中 preSum[i] 表示频率数组中从 0i-1 的前缀和。前缀和数组允许我们在常数时间内计算小于等于 k 的元素数量。
  • 具体实现步骤

  • 确定最大值:遍历数组 A,找到最大值 max,以便后续处理。
  • 频率统计数组:初始化一个大小为 max + 1 的频率数组 count,然后遍历数组 A,统计每个数值的出现次数。
  • 构建前缀和数组:创建一个前缀和数组 preSum,长度为 count.length + 1。前缀和数组的第 i 个元素表示从 0i-1 的频率之和。
  • 处理查询:对于每个查询值 sub[i]
    • 如果 sub[i] 大于 max,则返回数组 A 的长度,因为所有元素都小于等于 max
    • 否则,使用前缀和数组快速计算小于等于 sub[i] 的元素数量。
  • 时间复杂度分析

    • 排序时间复杂度:O(n log n),其中 n 是数组 A 的长度。
    • 频率统计时间复杂度:O(n)。
    • 前缀和构建时间复杂度:O(n)。
    • 查询时间复杂度:O(1),每个查询只需常数时间。

    总体时间复杂度为 O(n log n + q),其中 q 是查询的数量。这种方法在处理大量查询时表现尤为出色。

    转载地址:http://mgcs.baihongyu.com/

    你可能感兴趣的文章
    NIFI集群_内存溢出_CPU占用100%修复_GC overhead limit exceeded_NIFI: out of memory error ---大数据之Nifi工作笔记0017
    查看>>
    NIH发布包含10600张CT图像数据库 为AI算法测试铺路
    查看>>
    Nim游戏
    查看>>
    NIO ByteBuffer实现原理
    查看>>
    Nio ByteBuffer组件读写指针切换原理与常用方法
    查看>>
    NIO Selector实现原理
    查看>>
    nio 中channel和buffer的基本使用
    查看>>
    NIO基于UDP协议的网络编程
    查看>>
    NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
    查看>>
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>